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Abstract-- We obtain a one-dimensional model for the dvnamics of a rod-like body as an exact
consequence of three-dimensional linear anisotropic elasticity. by means of the internal constraint
of indeformability of the cross-section in its plane. The model takes into account flexure, extension,
torsion and warping deformations, which are coupled due to the anisotropy : if we assume that the
symmetry group of the material comprising the rod contains the reflections upon the cross-section,
the one-dimensional equations of motion split into three independent groups concerned, respectively.
with extension. flexure and torsion-warping deformations. This result generalizes the equations
obtained by Green et af. [(1967) Arch. Rational Mech. Analvs. 25, 285-298] and those originally
proposed by Timoshenko [(1921) Philos. Mag. 43,125--131] and Vlasov [(1961) Thin-walled Elastic
Beams. Israel Program for Scientific Translation. Tel Aviv] in the isotropic case.

I. INTRODUCTION

In recent years. the structural mechanics of anisotropic bodies has become of growing
importance for its applications to the analysis of composite and smart structures, as well
as to bone mechanics. plant mechanics, etc. It is noteworthy that for the three-dimensional
problem there is a large literature. from the work of Voigt (1910) to the books of Lekhnitskii
(1981) and Gurtin (1972). whereas when we deal with one-dimensional problems the
material is assumed to be either isotropic (e.g. Timoshenko. 1921 Vlasov, 1961 ; Reissner
1983a) or with anisotropy in the plane of the cross-section as in Green et al. (1967) or
Reissner (1983b). The generalization we get with such anisotropy is limited because the
extension, flexure (i.e. bending by terminal transverse loads). and rorsion-warping defor-
mations of the rod are uncoupled as in the isotropic case.

In this paper we wish to obtain, from the cquations of three-dimensional linear
anisotropic elasticity. a one-dimensional model for the dynamics of anisotropic rods which
takes in account the couplings between extension, flexure and torsion-warping deformations
due to the anisotropy. The reduction from the three-dimensional model is obtained, as in
Davi (1992) by assuming that the body occupies a rod-like region. and that in each point
during the motion, the internal constraint of indeformability of the cross-section in its plane
prevails: this is a non-standard manner to formulate the concept of thinness of the rod.
which rules out arguments like ““smallness™ of kinematical terms and similar. As customary
in linear elasticity. the presence of an internal constraint splits the stress into a reactive
part, whose role is to maintain the constraint and does no work, and into an active part;
moreover. the constitutive relation for the active part must comply with the prescribed
constraint as indicated by Podio-Guidugli and Vianello (1992).

Unlike Davi (1992) we are concerned with straight rods, because we are interested in
the kinematical couplings induced by the anisotropy. rather than by the curvature and
torsion of the axis of the rod ; however the method we use can readily be applied to curved
rods.

We assume the internal constraint as an exact mathematical restriction on the admiss-
ible motion, and then we are able 1o obtain, by using the constraint equation and the
kinematical compatibility equations. the following representation for the admissible dis-
placement field :
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u(x. ;1) = vl 0+ AL DX+ ol HD(x)e,

where x and ¢ are respectively the cross-sectional and axial coordinates, ¢ is time, e is the
direction and v the displacement of the axis, A is a skew-symmetric tensor which represents
the rigid rotation of the cross-section and ® is the warping, with amplitude w, of the cross-
section. Such a representation was first proposed by Vlasov (1961), as a priori given suitable
approximation for the displacement field : here we show that it is the only exact solution
for the system of differential equations which is obtained by taking into account both the
constraint and kinematical compatibility equations.

In the current literature, the warping function @ is assumed as the solution of the
Saint-Venant’s pure torsion problem ; since the three-dimensional problem we are dealing
with is different from the Saint-Venant’s one, in this paper we propose a warping function
which is consistent with our three-dimensional formulation.

Once we obtain the admissible displacement field, we write the admissible strain and
the active stress; by introducing stress and couple resultants over the cross-section and the
bi-shear and bi-moment characteristics we get, from the Hamilton—Kirchhoff principle, the
one-dimensional balance equations for the dynamics of anisotropic rods.

If we assume that the symmetry group of the material comprising the rod contains the
reflections upon the cross-section we are back to the case of anisotropy limited to the cross-
section and we are dealing with monocline materials and rods. As pointed out by Davi and
Tiero (1994) the qualitative behaviour is the same as in the isotropic case and the equations
of motion split into three independent groups concerned respectively with extension, flexure
and torsion-warping deformations ; this result generalizes the equations obtained by Green
et al. (1967) (within the context of a director theory) for orthotropic-rhombic rods and those
originally proposed by Timoshenko (1921) and Vlasov (1961) for isotropic rods.

2. KINEMATICS OF LINEAR THIN RODS

2.1. Three-dimensional rod-like bodies

We present a three-dimensional rod-like body A, modelled on a straight line £, a three-
dimensional body which occupies the cylindrical region #=% x £ of the euclidean point
space & (with an associated vector space 7 ) such that the typical point pe Z be

p=x+le. (VJ)eES X.Z, )

where the cross-section & is an open, regular planar two-dimensional domain with boundary
0% lying in a plane orthogonal to &, .#=]0, L[ is an open interval of the real axis R, and
ec ¥ the tangent unit vector to %, Let o be a given point of & and x(x) = x—o be the
position vector of x, then:

p(X..)=p—o=x+.e. xe=0, (€]0,L[ 2)

The boundary ¢# consists of three complementary regular subsets, the mantle #=0% x ¥
and the two bases. i.e. the terminal cross-sections ¥’ x {0} and & x {L} ; we call & the axis
of the rod.

Let u be a motion for #. say a vector field u(p: 1) = u(x.{ ;) on # x [0,7) where [0,7)
is a given time interval ; we find it useful to introduce the following decomposition:

u(x, 1) = 0x.:nN+ulx.l;ne, e, uel, 3)

with # =laef Ja‘e = 0}. Let E(p:) = E(x,{:1) be the infinitesimal strain field defined
as
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E = symVu = (Vu+Vu'). 4)

defined by # x [0,7) and taking values in sym. the space of the second-order symmetric
tensors ; we introduce the decomposition :

Ex.(i)=Ex.in+symyx..nRe+ex.{:e®e, &)

with the shear formation field € # . the axial extension field ¢ € R, and the plane strain field
Ee ", where

# = 'Aesym|Ae = (. (6)
The decompositions (3) and (5) reflect on (4) which becomes:

E =symV.a.
=V~ .
L=u (7
likewise, (5) splits the kinematical compatibility equation curl curl E = 0 into
VVe+E =(Vo+vVe") .
V.(curly) =(curl E) .
curl, curl, E = 0. (8)

where V, denotes the gradient operator with respect to x and curl, is defined, for all constant
vectors ae ¥, as:

curl, E-a = curl (Ea) - e. %)

Let S(p; 1) = S(x,{:f)esym be the Cauchy stress tensor field, defined on # x [0,7) : in the
same way as we did for the strain field. we introduce the decomposition

SX.{:n=S(X.in+symtx. i Reto(x.l e® e, (10)

where the plane stress field is Se # . the shear tension field 1€ # ', and the axial tension field
oeR.

We assume that # consists of a linearly elastic material, i.e. that the stress S is obtained
from the strain E by means of a symmetric, positive definite. linear mapping C(p) = C(x, (),
the elasticity tensor:

S = C[E]. (11)

We remember here that a material is unisotropic if its symmetry group 9, at a given point
p, defined as the set of all orthogonal tensors Q which obey :

QC[E]Q' = C[QEQ']. VvEesym. (12)

is a proper subgroup of the orthogonal group. whereas it is isotropic when %, is the
orthogonal group.
The decompositions (5) and (10) induce the following one on the stress—strain relation

(11):
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S = C[E] + 17+ De,
1= _"E+Gy+he
7=D'E+h - +Fs; (13)

here € maps .# into itself, L maps # into # and D, Ge #', he # ', EcR: the positive
definiteness of C implies in turn the positive definiteness of C, G and E > 0.

Up to this point we have simply reflected the structure of Cartesian product underlying
the rod-like region into the motion. strain and stress fields. as well as into the kinematical
field equations and constitutive relation for the body occupying # ; now we declare that %
1s a thin rod.

In this regard. it is customary to define the thinness in terms of the geometry of the rod
(typically if d denotes the diameter of the cross-section & we say a rod is thin when dL™!
1s “small” in some sense) and then to reflect this into the kinematics by assuming that some
deformations are negligible when the rod is thin [e.g. Love (1927), §. 257 and Hay (1942)];
here we want to reverse the role of geometry and kinematics by assuming that

a rod-like body # is rhin if. in every motion. the plane deformations of its cross-
section .’ are negligible.

i.e. we give a phenomenological description of the thinness rather than a geometrical one.
In the notation we introduced. this statement is equivalent to the following restriction
on the strain field:

Ex,l:0) =0, V(x.{:ned x.g x[0,1). (14)

2.2, Kinematics

The kinematical assumption (14) is an internal constraint which restricts the possible
deformations of the three-dimensional rod-like body 2. As is customary in linear elasticity
[cf. Gurtin and Podio-Guidugli (1973)], an internal constraint is the prescription of a linear
manifold & of admissible strain ; moreover, the presence of a frictionless internal constraint
splits addictively the stress S into a reactive part S'®, whose role is to maintain the constraint
and does not work in any admissible motion, and an active part S*':

S =SV 48H,
SN = C[E]. VEev.

S*et (15)

where Z* denotes the orthogonal complement of 2 in sym; as in Podio-Guidugli and
Vianello (1992). we require the elasticity tensor C to reflect the maximal material symmetry
compatible with the prescribed constraint. which implies:

IV =0, vVeu . (16)

When (14) plays the role of an internal constraint, then the linear manifold of admissible
strain for the rod-like body £ is

Y= EesymlE-V=0.vVe.x}, (17
§

with V independent on both p and 7 accordingly. & ==.#" and the reactive stress is given
by:
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S® =S, (18)

whereas, in order to comply with condition (16). the elasticity tensor (13) must obey:
C=0. L=0. D=0 (19)
To obtain a representation for the motion fields associated with the admissible strain we
notice that, by using (14) in (7),, the transverse component i can be arrived at by direct

integration :

ax. .0 =¥ n+0 nexx, (20)

where 6eR and ¥e€ % . We make use of (14) in the kinematical compatibility eqns (8),
which reduce to

V Ve =(Vo+VT).. Vicurly) =0; 21

and that can be now easily integrated to obtain the axial component u of the motion. First
of all, from eqn (21), we get

xCII0 = 0D+ 0e x X+ ol NV, O(x), (22)

with @ an arbitrary scalar field defined on .¥" and where 7,€ # and «, w e R ; then we make
use of (22) into (21), and (7). to obtain:

X o) = e +x e+ ol HD(x), (23)

where pe # and . weR.
Together (20) and (23) lead to a representation for the motion field associated with
the admissible strain which. for a prescribed function @, is parameterized on the three

scalar fields ¢, 6 and « defined on 7 x [0.7) and on the two vector fields ¥, ¢ € #” defined on
Ix[0,7). A concise representation for u is, therefore -

X, 0D = v DHAL DX ol DD(X)e, (24)
where

v =1V-re. (25)

represents the morion of the axis. the rigid rotation of the cross-section is represented by the
skew-symmetric tensor :

A=0Q+e@ep—pRe, (26)
here Q is the skew-symmetric tensor such that Qa = e x a. Vae ¥ , and the term
Uy = P, (27)
represents the warping of the cross-section, with amplitude v and where @ is the warping
Sfunction.

The admissible strain are thus obtained by making use of (20) and (23) into (7):

c=V 4o+l xexx+oV,0,
o= l[;—f—(p_;"X«F.u);(D; (28)

finally, by (13) and (19). we are led to the constitutive relation for the active stress S
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™ =G +o+0.exx+oV D) +h(r.+¢@.: x+w D),

Y =h (3 +e+0 exx+aV D) +EC. +0, X+ D). (29)

Remark 1. Hypothesis (14) was first introduced by Vlasov (1961), as one of the starting
points for his theory of thin-walled beams; in §.X of Vlasov (1961) by using only this
assumption a theory for beams of solid section is developed : however, the point of reactive
stresses necessary to maintain such a constraint, as well as the restrictions (16) on the
constitutive mapping are missing. In the resulting displacement field the representation (23)
was postulated directly, rather than obtained as a necessary consequence of the kinematical
compatibility equation once one assumes (14) [e.g. Reissner (1983a, b), and also Simo and
Vu-Quoc (1991), eqn (10) which is obtained as the linearization of an a priori given finite
deformation field].

3. DYNAMICS OF LINEAR ANISOTROPIC RODS

3.1. Dynamical balance laws

We define what we mean for an elustic process for a thin rod-like body # : given a body
Jorce field b(x, { ;1) on # x [0, 1), and a surface force field s(x, { ;1) on .# x [0, 1), the ordered
array

p =@ . 0. 0.0),E@, S™ W) +S®], 30)

with u as in (24), E(u) as in (28). SV as in (29) and S*® as in (18), is an elastic process
corresponding to the external force svstem (b,s) if it verifies the equation of motion [cf.
Gurtin (1972), §.60]:

divS+b=pu, inZ%x|[0,1),
Sn =s. on.# x{0,1), 3D

where p(x, ) > 0 1s the densiry field over # and n(x, {) is the normal unit vector to .#.
Let .o/ the space of all elastic processes p for thin rods: for 7, < T we define the

functional
™ /
wipl = | (
0

v

[s-E-pu,-uf[ b-u—J s-u), Vpes: (32)
# F Y4

Y o

b —

which, by the Hamilton-Kirchhoff principle [vid. Gurtin (1972), §.65], attains its minimum
if p satisfies the equation of motion (31).

We take the first variation of (32), and taking into account (5), (10) and (13), we arrive
at

0 frLsr
0= .f J (‘ rM]“v'“+g‘m“1”+p(u.r'u0./)+b.“0+f s.u0>’ (33)
0 0\ oF

where the variable u, is represented by (20) and (23), and is related to y, and g, by (28).
As is customary with rod theories, we express the equation of motion in terms of

resultants over the cross-section rather than in terms of tension, Accordingly, we define as

usual the stress resultant v = £+ re with the shear t and the normal force r defined by :
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£ o) =J x. {30, r(in = f o(x,(5 1), (34)

4 v

and the couple resultant m = m+ me where the bending moment 1 and the torque m are
given by :

~ ”

m(C;t)e=J XXT(X,Ci1), Wm0 =] xxed(x,{;1); (35)

/ J7

moreover we need to introduce, for a given warping function ®, the bi-shear re, and the
bi-moment myg, .

~ ”

rw(C:r):J V. D(x) 1(x, {1 0). md,(c;r)zj D(x)o(x,{;1), (36)

4 S/

and the loading terms:

e - 3
Il
e
>
<
[~ 2]
+
=~ J
<
fh)
A
Il
~
>
+
T

>
i

. . -
bx+J SX, ¢c=e- x><b+f x x §,
Y

c

v

~

Co = bd>+[ 5. (37)

J7 Jov

With these definitions. (33) becomes

"0 (1
0= J J fev,. +rvg +mly e x i Qg+ rewy + Moy
0 Ji

)

0

1.
-J [ prVo+pro+e oy +cly +hw,
0o Jo

P L

_J J p("ﬁ}r .o()_l+(Ar,/+DI(U‘I)I-OJ+(J([L!+d]w.l)"pOJ
0 0
+trJ*o 101)‘1 + (dl Q.+ D\ (U)_/ + l'_l))(’)()‘;)-

where the point 0 €.% is chosen in order to have :
f =0, (38)

A > 0 1is the area of the cross-section ., the positive definite Euler and inertia tensors J and
J* are defined as

=j X ® x. J*:J (e xx) ® (e xXx), (39)

where
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D, ZJ d, d, =J x®. (40)
¥ %

We assume without loss of generality that the density is constant, p = p,, and the material
is homogeneous, C=C,; then by standard variational techniques we obtain the equations
of motion on [/ x [0,1)
ro+p = p(Ar + Do),
f@ +l’i = pAV_,,,
€Xx ﬁl.; ”_i:~é = P(JCPN +dl UJJI)?

m-+c¢=ptrd*4,,
Mo —Fy + Cp = P(D| ((D.n + l'iu) +dl : <P.u)7 (41)

and the complementing boundary conditions on {0, L} x[0,7):
rv=0 m-(pxe+tbe)=0 mew=0. 42)
We use (29) in (34)—(36) to arrive at the constitutive relations for r, m, rq and mg:

r=dAh (@+¥V. )+ EAv +h-d;o+ ED o,
t=AG(e+V.)+ Ahv .+ Gd,w+ D ho -,
m=J*GO.+Jhxe) ¢.+G Lio+hxe-dw,,
exm = EJo.+Jhxe)d .+ Edyw.+L ho,
te = Gdy " (¢+¥.)+G L 0. +G-Lyw+d,"he.+L h ¢ +h-d;o,,
my = Dh-(o+¥:)+hxe-d 0 +h-dyw+ED v . +Ed "o, +ED,w,, (43)

where

~

1
d: = J VX(D, d} = “J Vx(q))zv
y 3)s
L = J x®V,0, L,= J V.o ® V,0. (44)
/ s

The equations of motion for thin anisotropic rods in terms of the unknown fields ¥, v, ¢, 8
and w on / x [0.7) follow, therefore, from (41) and (43):
Ah (@ +V )+ EAv .+~ ED\w . +h dyw.+p = p(4v,+ D w,),
AGlo +v )+ 4hr -+ D ho--+Gdyw +p = pA¥
Elo .. +Jthxe)d . +Edw..+(Lh—Dhw-
—AGY . — Ahv . — AGo - Gd,w—¢ = p(Jo ,+d w0 ),
J* GO . +Jhxe) ¢, . +hxedw_ +G Liw,+c=ptrJ*d,,
DhV - +EDw;, +hxe-d\0. . +ED v +Ed -¢,;
-Gd,'¥. ~G-L,0.-+(Dh-Lh)-¢.—d, -hv,
-G L.w—Gdy @+c¢y = p(Di(w,+v,)+d, " 9,). (45)
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The reactive stress S™ can be calculated from the equation of motion (31), once we solve
(45) ; indeed, by putting (10) in (31) we arrive at:
div, S +1- +b = pd,. 1 A x[0.7).
on -/ x[0.7). (46)

»

Il
o

Sn
and
divit+ag . +bh=pu,. in #x][0.71).

T'n = s. on .4 x[0.7). 47)
where div, denotes the divergence operator with respect to x. Then. since (18) holds, we
have:

divyS® = —(Gy+he) +pl,—b. in #x[0.1).

S®n=3. on - # x[0.1),
with . ¢ and @ given. respectively. by (28) and (20).

3.2. The warping funcrion

In the literature [e.g. Vlasov (1961), Reissner (1983a4). Simo and Vu-Quoc (1991)] the
warping function is determined by considering the Saint-Venant’s uniform torsion problem
for a prismatic body A=« [

AD=0 i /.
(V.@+exx)-n=0. on (/. (48)
here A, denotes the two-dimensional Laplace operator: some authors require also that @

obeys other conditions. as in Vlasov (1961) where it is required to obey the so-called
orthogonality conditions :

D, =0 d, =0 (49)

As a matter of fact, @ is independent of ¢ and it makes sense to assume the warping function
as the solution of a static equilibrium problem: moreover. since many rod theories are
based on some kind of approximations of the Saint-Venant’s beam theory [e.g. Antman
(1972). §8.11-12]. the fact that in such a theory b =0 and § = 0 is still regarded as a
reasonable approximation.

The equilibrium equation we arrive at from (45). by setting all the dynamical terms to
zero, are derived on the contrary from a three-dimensional constrained elasticity problem
which is different from the Saint-Venant's one: i.e. find an elastic state

p = [u.E(u). S (m) +S'®'] (50)
with u as in (24). E(u) as in (28). S"V as in (29) and S™® s in (18). which verifies

divS+b
Sn=s. on .#. (51

0. n #.

i

for a given external force system (b.s) ; therefore. we scurch the warping function as solution
for the three-dimensional constrained elasticity problem (50). (51). by assuming the external
force system as in the Saint-Venant's problem and the semi-inverse assumption on the stress
tensor:
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S. =0, (52)

which was originally proposed by Voigt (1910) and was used in Davi and Tiero (1994) to
solve the Saint-Venant’s problem for anisotropic solids.
If the constant elasticity tensor is invertible, then (52) is equivalent to:

E.. . =sym((V,u) . =symV, (u;) =0, (53)
which implies :

u. =a,+WyXp, (54)
where a, and w, are two constant vectors. By integrating (54) twice along { we get:
u(x. ) = ay(x)+{a, (x) +30 (a9 +Wo X X) +:0 Wy x e, (55)
where, in order to comply with the prescribed internal constraint (14), we must have:
a,(x)=b,+wexx+y,(x). be¥#, w,eR, a=12, (56)

where b, and w, are constant ; we use (3) and (7) and obtain the strain associated with (14)
and (52):

X, 8) = Vs (X) + by +1wae x X+ E(Vah s + 4 + woe X X),
e(x,0) = ‘//l(x)+:(11)+wtyxx'e)e (57)
where a; = 4, + qee and w, = W, -+ w e,

On putting (57) in conjunction with the constitutive relations (13), (19) and the
definitions (34), (35), into the equilibrium equations :

r =0. m.texr=0, (58)
we arrive at the conditions :
wy =0, a, =0,
¢1=%G'1h®(w.)xe)~x®x+c,, ¢, = const.; (59)

finally, we use (13), (19). (57) and (59), in the equilibrium equation obtained by setting
zero the dynamical terms into (47) and upon the definition of :

V.D(x) = w: (Vg (x) +(G "h® G "h)(X ® x)(W, x e)+b,), (60)
we arrive at

div, GV, ® =0, in &,
GV, ®+exx)-n=0, on ¢%. (61)
The boundary value problem (61) plays the role of (48) in the three-dimensional constrained

glasticity problem (50) and (51), and reduces to it for isotropic rods where G = GI, where
I denotes the identity in ¥
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Remark 2. If the warping function ® obeys (61). then we have the following identity :

» »

G'J VX(D®<D=‘ (DGVX(I)-n:" dGexx)'n

S

/

= | Vo-Glerrni=-G-Q| x®V,0,
which leads to:
G'L.=-G-Ql.,: (62)
moreover, since (61) implies :
j G(V.®+exx) =0,
then, when (38) holds, we have :
d.- =0. (63)

3.3. Monocline rods

In a rod-like body we can recognize a “global™ symmetry which is based, roughly
speaking, upon the structure of cartesian product between a cross-section and an axis of
the underlying rod-like region ; we can chose the material in such a way it recollects this
“global” symmetry with the local one described by its symmetry group: this happens, for
instance, when %, contains all the rotations of amplitude 7 around e:

Qi =2e®e—1L (64)

composed with the central reflection Q = —1; such a4 matenial is called monocline with
respect to e.

In this section we shall assume the rod to be comprised of a constrained monocline
material whose axis of anisotropy coincides with the axis of the rod itself. According to
Gurtin (1972 §.20), the constitutive relation for such a material can be obtained by setting :

L=0. h=0. (65)

into (13); moreover. conditions (19) hold and. therefore, the constitutive relations (43)
reduce to:
r=LEAv . +EDw_.
f=AG(o+7.)+Gd-o.
m=J* GO -+G-L,w.
exm=E£J, +Edo_.
to = Gdo(9p+V.)+G L6l +G*L,w,
my =ED v +Ed -+ ED>w-. (66)

whereas (45) become :
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EAv .+ ED o +p=p(Av,+D w,).
AG(p_+3v )+ Gdyw . +p = pA¥
Eleo -+ Edyow .- —AG(p+V.)—Gdyw-—¢ = p(Jo,+d,w,,).
J** G - +G-Liw-+c¢=ptrJ*d,,
EDv. +Ed "¢ +EDw» —Gd, (9+%)—G L0,
G L.otce =pD (@, +r,)+d"9,). (67)

When the orthogonality conditions (49) hold, the constitutive relation (66)4 is the same
proposed by Vlasov (1961):

me = ED->w_, (68)

the constant D- being referred by some authors as the Viasov constant ; furthermore, if (49),
holds, the equations of motion (67) generalize the equations given in Reissner (1983a) for
1sotropic rods.

Let the warping function be a solution of (61) which obeys the orthogonality conditions
(49) : then the equations of motion (67) splits in three groups, the first one concerned with
the flexure of the rod and which involves bending moment, shears, and the associated
kinematical variables ¢ and ¥:

4G((P\+€‘H‘l" = pAvﬂrre
Elo — AG(p+V.)—¢ = plo,, (69)

the second one concerned with the rorsion-warping deformation which involves torque, bi-
shear, bi-moment and w, 6:

J* GO +G- Lo +c=ptrd*o,,
EDvy -G L0 +GQL,w+ce =0, (70)

and the last one concerned with the extension and involving only the normal force and v:
FAv +p=pAr,,. (71)

From (69) we obtain the following equation for ¥:

EJ —pJ(A~EG W, +pA%,+p G "%, +j=0, (72)

When the material comprising the rod is orthotropic-rhombic, which means that its
symmetry group contains the reflection on three mutually orthogonal directions e, (o = 1,2),
e} =e.

QI =2, ®e, =1L (i=1,2,3nosum)
then
G=0e ®e +0e, @ e,
and (72) reduces to eqn (53) of Green er al. (1967), which is however obtained within the
context of a director theory; furthermore. when the rod is isotropic and in absence of
applied forces, we obtain from (72) the equation of Timoshenko’s (1921) beam theory [see

also Volterra (1955), Medick (1966) and Antman (1972) where a survey of earlier rod
theories which lead to this equation are given].
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Finally, eqns (70) can be solved to obtain the following one for 6:

—pG-QL, trJ*0 ,+j=0, (73)

where j = EDyc ..+ G+ (QL,c—L,cq.); this equation has no counterpart in Green et al.
(1967).
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